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ON SOME FURTHER PROPERTIES OF NONZERO-SUM

DIFFERENTIAL GAMESY

By

A, W, Starrand Y. C. Ho

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

The general nonzero-sum differential game has N players,
each controlling a different set of inputs to a single nonlinear dynamic
system and each trying to minimize a different performance criterion.
Several interesting new phenomena arise in these general games which
are absent in the two best-known special cases (the optimal control prob-
lem and the two person zero-sum differential game). This paper con-
siders some of the difficulties which arise in attempting to generalize
ideas which are well-known in optimal control theory, such as the.
"principle of optimality' and the relation between "open-loop' and
""closed-loop'' controls, Two types of '"solutions'' are discussed: the
"Nash equilibrium'' and the ''noninferior set'. Some simple multistage
discrete (bimatrix) games are used to illustrate phenomena which also
arise in the continuous formulation.

This work is a continuation of work reported in Harvard University

Technical Report No. 564, May 1968,



I. Introduction

In the general N-player nonzero-sum differential game, the ith

player chooses u, trying to minimize

ot
f
I, j L%, b, uy) A+ K (x(t) (M

1
t
o

subject to the n-dimensional state equation (common to all players)

% = f(x,t,u x(to) =X (2)

1”'.’uN),

and possibly subject to various inequality or equality constraints on
the state and/or control variables (which are omitted here for simplicity).
This problems, which includes the optimal control problem (N = 1)

and the 2-person zero-sum differential game (N =2, J = —JZ) as special

1
cases, is of interest in analysing a dynamic system with inputs controlled
by several '"players' with not entirely conflicting goals,

One would naturally expect that methods for computing solutions
to these problems could be obtained by generalizing well-known methods
of optimal control theory, While this is true to some extent, several
difficulties arise which are absent in control problems and two-person
zero-sum differential games. In this paper, we shall consider general-
izations of two ideas which are of great use in solving optimal control
problems:

1) The relation between "open-loop' and ''closed-loop' optimal

controls,

2) The ''principle of optimality, "

"To appear in Journal of Optimization Theory and Applications, 1969,



Nonzero-sum differential games were discussed by Starr and
Ho1 who concluded that there was no single satisfactory definition of
"optimality' for these problems, Depending upon the application,
various types of solutions are relevant.

One interesting type of solution was the '"Nash equilibrium, "
It is "optimal" in the sense that no player can achieve a better result
by deviating from his '"Nash' controls as long as the other players
continue to use their '"Nash' controls, Denoting the control strategy
and the cost for the ith player by u, and Ji respectively, the Nash
equilibrium strategy set {u;, cees u;\]} has the property that for
i=1 ..., N,

st

%k % mi % % %
s Upy) = ;r;m Ji(ul, Pee Wy e o Uy e ,uN) '

Letting u* = {u*, ceos uI\T} and J = {Jl, oo JN} , we sometimes refer
to u* as a '"Nash saddle point" of J(u).

Depending on the formulation of the problem, u, may be one
of a finite set of controls (static bimatrix game), a function of time
(open-loop differential game), a function of the state vector and
time (closed-loop differential game), etc,

In the analysis of competitive dynamic systems (e. g. several
rival firms in an imperfectly competitive market) the restriction
that no binding agreements can be made among the players leads
naturally to the '"'secure' Nash solutions. One then would like to know
what has been sacrificed to obtain this security, i.e. do solutions exist

which reduce the costs of all players below their Nash costs? This leads



us to a second type of interesting solution: the '"'set of noninferior

A .
strategies. ' If u is nonitiferior, then there exists no u such that

A
Ji(u)éJi(u) fori=1,...,N

with the inequality strict for at least one i, Any ''negotiated" solu-
tions with all players cooperating but no transfer payments allowed
should be chosen from this class. In most differential games, there

is a single Nash solution but an (N - l)-parameter family of noninferior,

or "undominated, " solutions,

II. The relationship between "open-loop' and 'feedback'' Nash solutions,

In optimal control problems one often distinguishes between
"open-loop'" solutions, where the optimal control for a trajectory

through a specified initial state x, is given as a function of time, and

0
"closed~loop'" or 'feedback'' solutions which give the optimal control
as a function of the state x and time t everywhere in an appropriate
region of the state-time space. It is well-known that in deterministic
problems* the open-loop solution u°(t), ty =t = te, can be generated
from the feedback solution uo(x, t) by simply integrating the state equa-~
tion forward from the initial point (XO, to)s This would be a reasonable
way to find the open-loop control if an algorithm (based on a dynamic
programming approach) were available for computing the closed-loop
optimal controls in a region containing the given initial point.

Alternatively, if a successful open-loop algorithm (based on a

variational approach) is available for calculating uo(t) for a trajectory



through (XO, to), then the closed-loop control law can at least in
principle be generated by successively solving the open-loop problem
for each initial point (XO,tO).

In what appéars'to be the most interesting class of differential
games, all players know the current state vector, so that a ''closed-
loop' Nash solution is required®, There may also be interesting
"open-loop' problems where the entire sequence of controls for each
player must be chosen prior to the initial time,

Whichever. type of Nas.h solution is required, one could in prin-
ciple solve for the Nash strategies for all the players in advance, since
there are no "unpredictable'’ inputs to the system. One therefore is
tempted to conclude that the same relation exists between the open-loop
and closed-loop strategies as exists in the optimal control problem; i.e.,
that they are just different ways of describing the same outcome. The
purpose of this section is to demonstrate that such a conclusion is false.
Although our real interest is continuous differential games, we shall
first illustrate the basic idea by considering a very simple discrete

finite~state multistage game,.

“ie., problems where all parameters and all inputs to the system over
the time interval under consideration are known at the initial time,
>hMore: realistically, they might have imperfect (noisy) measurements of
the state vector, but here we assume exact knowledge of the state vector
as well as all the system parameters including the cost functions for the
other players.



In the two-player game in Fig, 1, each player has two possible
controls, labeled 0 and 1, At each stage t, both players simultaneously
choose a control, The resulting control pair determines the transition®
to the next stage, .There are four possible transitions, leading to three
possible stages x, and associated with each transition are costs ¢ 5
(in circle) for the two players, FEach player wants to minimize his
total cost in reaching t = 2, the terminal stage.

Let us try to find the ''closed-loop' Nash solution by following
the "dynamic programming'' approach, At staget =1 and state x =2,
the situation for the two players is represented by the bimatrix game
in Fig, 2a, Clearly the controls 0,0 are the only pair with the Nash
property, since Player |l would increase his cost from 2 to 3 by playing L
(As far as the Nash equilibrium is concerned, it does not matter what
would happen if both players played a non-Nash control.) The Nash costs
are c; =c, = 2, Similarly, we see from Fig. 2b that the Nash controls
atx =1, t =1are 1,1 with costs 0,3 and from Fig, 2c we see that at
x =0, t =1 the Nash control pair 1,0 gives costs 4,1, Moving back to

the initial stage t = 0, we assume that the players will play their Nash

controls att =1, so we add the Nash cost 2,2 associated with state 2 to

the costs of the transition leading to state 2, etc. The resulting situa-
tion is given in Fig, 2d., The Nash control pair is then 0,1 with costs

4,4 for the entire game. The ''trajectory' is x(1) = 2,x(2) = 2,



t=0 t=1

f=2

FIG. 1 A DISCRETE MULTISTAGE GAME

PLAYER 2
O 1

ol21,3 x=2
{a) PLAYER 1 O
114,1{0,2 t=1

PLAYER 2
o1t
0{2,2(3,t «x=t

2,40, t=1

(b) PLAYER 4

015,2{2,3 x=0

(c) PLAYER |

PLAYER 2
O 1 d

0125 .(ZD x=0
(d) PLAYER {
1

3,2153 t=0

FIG. 2 SITUATION AT EACH STATE
x AND TIME t.

PLAYER 2

cojo1]10 | 1

00|4,415,3/@D3.5  \,op
ptayEr 1+ 01]4,6/2,516,3(2,4 CLOSED-
1014,3]1,4]7,2]8,1 LoopP

H 0,5{7,4]53

NASH OPEN-LOOP

FIG. 3 OPEN LOOP COST TABLE FOR
GAME IN FIG. 1



Can we then conclude that this trajectory with its associated
control sequences 00,10 is also the open-loop Nash trajectory? In
Fig. 3 the costs are tabulated for each pair of open-loop control
sequences, InSpec.tion'of this bimatrix game shows that only the con-
trol sequence pair 11, 00 has the Nash property (giving costs 3, 2).

The closed-loop Nash solution 00,10 does not have the Nash property
in the open-loop table., The open-loop Nash trajectory is x(1) = 0, x(2) =

One reason for this difference between the open- and closed-loop
solutions is the fact that several control sequences were eliminated
from consideration at t = 0 by the assumption that the player would
only choose Nash controls at t =1 (based on knowledge of state at t = 1),
This assumption that the players will always attempt to "optimize' the
remaining part of the trajectory based on current state regardless of
previous actions is the natural extension of the basic principle of opti-
malty found in all dynamic programming type of calculations. Yet it
is NOT always safe to employ such assumptions in the nonzero-sum
case, Another interesting point to note is that the Nash open loop
costs (3, 2) in Fig. 3 is strictly superior to the closed loop costs (4, 4)
calculated via '"dynamic programming.' This casts further doubt in
the applicability of the principle of optimalty. We shall have more to
say on this in section III,

It should be pointed out that the two-stage game with closed-loop

control in Fig. 1l can also be represented as a single bimatrix game, but

0.

not the same one as was obtained in Fig., 3 for open-loop controls. Since



each player has eight possible feedback strategies, the closed-loop
bimatrix game will be an 8 x 8 table. In this array, only the closed
loop strategy pair

ul(0,0): 0 U’Z(O’ 0) =1

H

ul(l, 1§ i uz(l, ) =1

ul(Z, ) =0 uZ(Z, 1) =0
has the Nash property, Obviously this would be a very cumbersome
way to find closed-loop Nash strategies, especially with a larger

number of states, stages, controls or players,

Continuous Differential Games

A general conceptual method for finding the ''closed-loop' Nash
equilibrium control uf(x, t), ..., uj:(x, t) was presented in [1]. One finds
the ""remaining cost functions' Vi(x,t), i=1,...,N, by solving a set of
coupled partial differential equations

BVi min BVi
-5;—'2111 Hi(x;st;ul’-aaauN;g;;—)) 1=1!0°-2N

where the Hamiltonian for the ith player is

oV,
Hi(x; t; Wiseoos Upps &_{_1) = Li(x,t, Upseeos uN)
oV,
+ axl f(x,t,ul,. . ,uN)

(4)
On the terminal surface,

V. (x(t)), t) = K (x(tp) (5)
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The Nash controls are the u, which achieve the required minima. If
the functions Li and f are continuously differentiable in u, and if the
minimum is in the interior of the set of admissible controls, then u,

can be found by solving

OH,
—t =0, i=1,...,N (6)
du,
i
. . . _ . AV
to obtain uy explicitly as a function of x, t, and 3% One must then
x

solve the set of partial differential equations for the Vi(X’ t), from
which one finally obtains the u'ip(x, t).
To find the open-loop Nash solutions, one first uses a varia-

2
tional method to derive necessary conditions, Case obtained the

following conditions, which hold only if the controls are all open-loop:

% = f(x, t, LITRI uN) (7)
oH

fyT i

A7 = e — 8
i S (8)
T o)

AT () = ——— K. (x(t
1( f) oxlty) 1(X( f)) (9)

u, minimizes H, (x;t;u u, . XT) (10)
i i Phaths e v v g B i

where

H.(x;t;u u ‘7~T) = L.(x,t,u u..)

A At i EE I R N At R R )

T
+ A‘i f(x, t, Upsenss uN) (11)
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Computational algorithms can be obtained from these necessary
conditions, Necessary conditions for the closed-~loop Nash controls

Yl(x,t), .o ,YN(X, t) were obtained by Starr and Ho1 by replacing (8) by,

cp OH, N 3H, E‘fj
Lo 1)y __1 , 12
>\1 ox du:; Oox (=, 1) (12)
j=1
J#i

The presence of the summation term in (12) makes the necessary
conditions (7), (12), (9), (10) virtually useless for deriving computational
algorithms, Note that this troublesome term is absent in the optimal

control problem (because N = 1), in the two-person zero-sum game

. , BH1 BH?
(because H = -H, so —— = -—— = 0), and in the open-loop nonzero
1 2 du auz
2
oy,
sum problem (because —a—l = 0), One certainly expects the open- and
x

closed-loop solutions to be different whenever this term is nonzero.
Using reasoning familiar from optimal control theory, one may
interpret (12) as follows: }\i is the "influence function' for the ith
player, i.e., the sensitivity of his cost to a perturbation: in the: state
vector, If the other players are using feedback strategies, any per-

turbation 6x ¢f the state vector will cause them toschangeitheir controls

v,
by an amount S—Jéx If the ith Hamiltonian were already extremized
x

with respect to the control us j #1i, this would not affect the ith player's

oH,
cost, but since generally -a—u-l- # 0 for i #j, the reactions of the other

players to the perturbation will influence the ith player's cost, and the
ith player must account for this effect in considering variations of the

trajectory.
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In fact, a rather peculiar situation arises when the ith player
makes a small change 6ui in his control in the vicinity of the Nash
trajectory, Since .auil = 0, the effect of 6ui on the ith player's cost
is only second order in 6ui, but the effects on all the other player's

OH,

costs are first because -a—u-} #0 for i £3j. In making fine adjustments
i

to reach his minimum cost, the ith player thus may cause wild fluc-
tuations (either beneficial or harmiful) in his rivals' costs. If they
are able to react to this change (i.e., they have closed-loop control)
they in turn cause first order changes in the ith player's cost, so
that another second order term in f)ui (due to the reactions of the
rivals) must be added to the "direct' second order effect of 6ui on
the ith cost. It is thus easy to see that the equilibrium conditions
(and consequently the trajectories which satisfy them) are not the
same in the open- and closed-loop problems. Even for the simplest
nonzero sum differential game, the 'linear-quadratic' case, entirely
different Nash solutions have been obtained by the authors for the

open-loop and closed-loop formulations,

III. The Optimality Principle

The well-known "'principle of optimality' has been of great use
in providing a conceptual framework for solving optimal control pro-
blems, The same principle, which Isaacs called the 'tenet of transition, "
is the basis of a general method for finding optimal strategies in zero-sum

two-person differential games, It is thus naturally interesting to inquire
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what principle of optimality, if any, holds for more general N-person
nonzero-sum differential game, In this section we shall discuss the
relation between the noninferior solutions, the Nash solution, and the‘
optimality principle.

In a static nonzero-sum game, we shall speak of a ""prisoners'
dilemma'' situation®* whenever the Nash solution does not belong to
the noninferior set. For example. in Fig. 2 the 'prisoners' dilemma"
occurs in bimatrix games a and d, but not in b or ¢. It should also be

clear what is meant by the statement that the vector Hamiltonian

H={H JH (with H, defined in (11))

e HY)
has a "prisoners' dilemma' for some particular values of x,t, )\1, v ens XN'
Now consider a dynamic game (either a differential game or a

multistage game) whose closed-loop Nash solution is obtained via the
"dynamic programming' approach used in Section II. One is tempted

to guess that if no '"prisoners' dilemma'' occurs at any stage or state
during the computation of the Nash equilbrium, then the Nash solution

is noninferior, But this conjecture is false, as we shall see below,
Again we start with a discrete multistage game., The game in Fig, 4

is almost trivial; it is really a single static bimatrix game played twice.
Since there is only one state, there is no difference between ""open-loop"

and "closed-loop" -]— One can see by inspection that the '"prisoners’

*
See footnote in introduction of ref, [l].

+ A more complicated counter example where ''state'! is' important can
also be constructed, but the game in Fig, 4 is adequate for our purposes.
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dilemma'' does not occur at either stage in the Nash solution. The pair
of control sequences 00,1l gives the Nash solutions. At no stage did the
"prisoners dilemma' situation occur; i, e., the Nash solution at each
stage was noninferior, Can we conclude from this that the Nash solu-
tion is noninferior globally over 2 stages? In other words is 1':here no
""cooperative' solution by which both players can reduce their costs?

To answer this, we tabulate the costs for all possible pairs of control
sequences in Fig, 5,

Inspection of Fig, 5 shows that there are eight noninferior solu-
tions (marked with *) but the Nash solution is not among them. By
kplaying either Ol against 0l or 10 against 10, the costs are 5,5, com-
pared to the Nash costs 8, 8 obtained by playing 00 against 1. But to
obtain the costs 5,5 by the sequence 0l, 01, Player 2 must trust Player
l not to try to optimize (by playing control 0) att =1, Similarly, if
the costs 5,5 are to be obtained by the sequences 10, 10, then Player 1
must trust Player 2,

This very simple game has illustrated two basic points about
nonzero-sum multistage games:

(i) The absence of a "prisoners' dilemma'' situation at every
stage in solving for the Nash controls does not guarantee that the Nash
solution is noninferior over all stages,

(ii) Noninferior solutions generally requii'e trusting the rivals
to play nonoptimal controls, not only at the present stage but at all

future stages as well,
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FIG. 5. COST TABLE FOR ALL CONTROL SEQUENCES FOR THE GAME IN FIG.4.
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More basically, the principle of optimality, which is obvious in
éonﬁroi problems, also applies in zero-sum differential game problems
because it is reasonable to base the choice of action at one time on an
assumed mode of béhavior of the players at later times, i. e, they will
seek a minimum or a saddle point. The fact that the '"Nash' solution

for the simple game at t = 0 was noninferior was dependent on the

assumption that a Nash solution would be used at t = 1. In nonzero
sum games, since the meaning of "optimality'" is nonunique, it is
natural but not necessarily desirable to assume that the rivals will
continuously seek one particular form of solution, in this case the
Nash equilibrium. Cooperation should thus be considered not only at
any given stage but over several stages.

The noninferior solutions to the general differential game were
also presented in [1]. They could be obtained by solving the (N-1)-para-

meter set of scalar optimization problems

N N
min
s - N >
Ugyve s Uy uiJi where z“i 1 and M 0 (13)
i=l i=t

provided that certain convexity conditions are satisfied*,
For a given time-invariant weighting vector |, the associated
noninferior trajectory can be found by solving the Hamilton-Jacobi

equation
A A

oV i A AV
-S-t—(x, t, ) = ul’ fr,ll.n, uN I—I(X;’c;ul, e s uN; 5}'; ) (14)

"See footnote on next page.
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where
N A
/I§I= WL (x,t,u u)+-aj—7f(xtu Uyy)
i ”l’oo.’N X 311’- * TN
i=
(15)
and
N
A
VOxle) ) = D WK (e, o (16)
i=l

Let us now assume that the closéd-loop Nash solution has been
found by solving eq. (3). Generally the Nash solution will not belong
to the noninferior set, But suppose our game has the special property
that the controls for the Nash trajectory through any initial point are
also the controls for the noninferior trajectory for some time~-invariant
weighting vector u¥*. Then the remaining noninferior cost must be

related to the remaining Nash costs by

N
A sk )
Vix,t,4 ) = Zu;Vi(x, t) (17)

i=l

*
It is sufficient that the set of (N + n)-vectors
L (Xs tr ul; 2 & o uN)

1
LN(X, t,up, ..., U-N)
f(x,t, Uyso e N

generated by all the admissible controls be convex for all admissible x,
A weaker sufficient condition and a rigorous derivation are given (for the
discrete-time control problem with vector cost criterion) in Ref, 4.

PP
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' Substituting (17) into (15) (with 4 =p*), the Nash Hamiltonians Hi are

.. . A
related to the nohinferior Hamiltonian H by

B e

N

&Y o
e

A o
H(4 ) = 2 W H, (18)
i=1
Thus the assumption that the Nash solution is noninferior
implies that, at each time t on the trajectory, the set of controls
which satisfied the Nash condition for the (static) vector function

[Hl’ ...;H. ] also minimizes some time-invariant positive weighted

N
linear combination of the Hi’ i=1,...,N, In other words, as we
solve the infinite sequence of ''static Nash saddle-point problems"

(to get the Nash trajectory) we never encounter the ''static prisoners'
dilemma situation, "

This is a necessary condition for the Nash solution to be non-
inferior., In effect, it says that it is impossible for all players to
gain by playing '"cooperative' controls in the time interval [t,t + dt]
and then reverting to the local Nash controls in the interval [t + dt,tf].
Without the requirement that U* be time invariant, it would not be
sufficient that 'the static prisoners' dilemma situation'' never occurs
along the Nash trajectory.

Suppose the Nash solution has already been obtained for a given
game, We wish to determine whether or not this solution is non-
inferior, A simple way to check this would be to start at the terminal

time and compute the controls which minimize (at time tf) the linear

combination
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for some arbitrary positive weighting 4. By iteration we then attempt

to find a p* satisfying

N
2“? =1 and W, >0, i=1L...,N
i=l
which gives controls coinciding (at time tf) with the Nash controls,
Three results are possible:
(i) No such W* exists, in which case the Nash solution is not
noninferior,
(i) A unique p* is obtained,
(iii) u* is not uniquely determined, in which case more conditions
are obtained by repeating this procedure at earlier times,
If a unique U* is found, one can then solve the optimal control

problem with the scalar cost criterion
N
A b
ivi
i=1

starting at the terminal point of the Nash trajectory, The resulting
noninferior trajectory (holding W* constant) will coincide with the Nash

trajectory if an only if the latter is noninferior,

IV. Conclusions

The previous two sections have illustrated some of the interesting
phenomena which arise when the optimal control problem (or alternatively,
the "'strictly competitive' zero-sum differential game) is generalized by

allowing several controllers with different cost criteria. If one seeks
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a Nash equilibrium trajectory, one must specify whether or not the
controlers have instantaneous access to the state vector, since the
”open-loop"' and '"closed-loop' formulations lead to entirely different
solutions, If one wonders whether a different solution exists which
produces a better result for all '"players'' than the ''secure'’ closed-
loop Nash set of control strategies, it is not sufficient to examine
the set of Hamiltonians at each point on the Nash trajectory, This
"vector Hamiltonian'' contains the information necessary for com-
puting the closed-loop Nash controls at time t, provided the problem
has already been solved for the remaining time interval, but it does
not contain information about noninferior solutions, open-loop Nash
solutions, or any other solutions which may be of interest,

Also central to the discussion in Sections II and III was the fact
that on a Nash trajectory each player's cost is minimized with respect
to his own control but not with respect to the other players' controls,
Generally there will be no set of controls which simultaneously mini-
mizes all the players' costs. If such a set of controls did exist, the
problem would degenerate into N uncoupled optimal control problems,
with each player controlling all N controls, All players would arrive
at the same set of N optimal controls, and the Nash solution would
thus be noninferior (for every positive weighting vector U).

Because his cost is not minimized with respect to the jth player's

oH

control f‘vif el ; aul # 0) the ith player will be very sensitive to changes

j
in his rivals' controls, This fact is the cause of considerable difficulty

in developing algorithms for computing Nash controls for nonlinear prob-

lems.
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